
Performance Evaluation 48 (2002) 201–223

On open shortest path first related network optimisation problems

M. Pióro a,b,∗, Á. Szentesi c, J. Harmatos c, A. Jüttner c,
P. Gajowniczek b, S. Kozdrowski b

a Department of Communication Systems, Lund Institute of Technology, Lund, Sweden
b Institute of Telecommunications, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, Poland

c Ericsson Research, Traffic Analysis and Network Performance Laboratory, Budapest, Hungary

Abstract

The paper deals with flow allocation problems in IP networks using open shortest path first (OSPF) routing. Its main purpose
is to discuss and propose methods for finding settlements of OSPF link weight system realising the assumed demand pattern
for the given network resources (links capacities). Such settlements can result in a significantly better network performance, as
compared with the simplified weight setting heuristics typically used nowadays. Although the configuration of the link weight
system is primarily done in the network planning phase, still additional re-optimisations are feasible, and in fact essential, in
order to cope with major changes in traffic conditions and with major resources’ failures and rearrangements.

The paper formulates a relevant OSPF routing optimisation problem, proves its NP-completeness, and discusses possible
heuristic approaches and related optimisation methods for solving it. Two basic approaches are considered (the direct approach
and the two-phase approach) and the resulting optimisation algorithms are presented. The considerations are illustrated with
numerical results. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: OSPF; Traffic engineering; Network optimisation; Multicommodity flows

1. Introduction

The open shortest path first (OSPF) packet routing protocol [1] is one of the most commonly used
interior gateway protocols in today’s IP networks. OSPF uses shortest paths for routing the packets,
applying the equal-cost multipath (ECMP) principle to cope with multiple shortest paths. The packet
routing mechanism is therefore relatively simple, and can essentially be summarised as follows: all the
packets arriving at an intermediate node t and destined for node u are directed to the next hop along the
shortest path from t to u, regardless of the packets’ originating nodes. If there are several links outgoing
from node t and belonging to the shortest paths from t to u, then the traffic is distributed evenly among
these links. The shortest paths to destinations are identified at the network nodes on the basis of the current
links weight (metric) system w: each link e is assigned a positive number we (weight) and, as a result of

∗ Corresponding author. Present address: Institute of Telecommunications, Warsaw University of Technology, Nowowiejska
15/19, 00665 Warszawa, Poland. Tel.: +48-22-825-98-20; fax: +48-22-660-7564.
E-mail address: mpp@tele.pw.edu.pl (M. Pióro).

0166-5316/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0166-5316(02)00036-6

202 M. Pióro et al. / Performance Evaluation 48 (2002) 201–223

the OSPF link-state flooding mechanism, all the nodes are aware of the weights w = (w1, w2, . . . , wE)

of all network’s links.
Note that once the weight system is fixed, it strictly determines all the shortest paths and, consequently,

the points (nodes) where packet traffic flows are split to their destinations according to the ECMP rule,
not allowing for any flexibility during the network operation. On the other hand, the weight system w

can be adjusted and made fit to the current network state, i.e. by assigning infinite weights to the failed
links. Here optimisation problems of how the weight system should be calculated and adjusted in order
to optimise network performance arise; the investigations in this area have started only recently [2–4].

In the paper we address the capacitated (link capacities are given and fixed) allocation problems re-
lated to the OSPF routing. The main theoretical result of the paper, presented in Section 2, is a proof
showing that the OSPF flow allocation problem considered in the paper is NP-complete (for the notion
of NP-completeness see [5]). Because of the NP-completeness of the OSPF flow allocation problem,
one is forced to use heuristic methods for solving them. In Section 3 we discuss heuristic algorithms
based on the search in the weight systems space using local search, simulated annealing and Lagrangean
relaxation, and the branch-and-bound approach. Next, in Section 4, we discuss a two-phase approach in
which the demands are first allocated to single paths (Phase 1) and then an attempt is made (Phase 2) to
find a corresponding weight system w generating the set of single demand allocation paths obtained in
Phase 1 (this means that the paths found in Phase 1 must be the unique shortest paths with respect to the
weight systemw). For Phase 1 we consider mixed linear-integer programming (MIP), and certain heuris-
tic algorithms based on the evolutionary algorithms and simulated allocation meta-heuristics. For Phase
2 we discuss known and new linear programming formulations for testing the shortest paths uniqueness,
and for finding, when they exists, the weight systems that generate the path sets obtained in Phase 1.
We illustrate the effectiveness of the proposed algorithms with numerical examples (Section 5) and draw
some conclusions (Section 6).

2. Basic problem and its NP-completeness

The main question dealt with in this section is the existence of a feasible OSPF link weight system for
given demands matrix and links capacities. Hence, we ask whether there exists a system of weights that
generates flows realising the demands such that the resulting links loads do not exceed the given links
capacities. We investigate the computational complexity of the problem.

2.1. Problem formulation

We consider the following OSPF flow allocation problem, abbreviated with FAP:

• indices:
d = 1, 2, . . . , D demands
j = 0, 1, . . . , m(d) path for flows realising demand d
e = 1, 2, . . . , E links

• constants:
hd volume of demand d to be realised
aedj 1 if link e belongs to path j realising demand d, 0 otherwise
ye capacity of link e

M. Pióro et al. / Performance Evaluation 48 (2002) 201–223 203

Fig. 1. OSPF flow splitting rule.

• variables:
weweight of link e (non-negative continuous variable), w = (w1, w2, . . . , wE)

• constraints:∑
j

xdj(w) = hd, d = 1, 2, . . . , D, (2.1)

∑
d

∑
j

aedjxdj(w) ≤ ye, e = 1, 2, . . . , E. (2.2)

Above, xdj(w) denotes the flow realising demand d on path j, implied by the links weight systemw. For a
given systemw, the flows xdj(w) are computed according to the ECMP rule. The rule is illustrated in Fig. 1:
the shortest paths s–a–c–t and s–a–d–t realise 1/4 of the total demand volume between nodes s and t, whilst
the shortest path s–b–e–t realises the remaining 1/2 of the volume. Note that the flow functions xdj(w) are
not given explicitly, so FAP is not a mathematical programme. In order to make the ECMP flow splitting
procedure consistent, OSPF usually assumes that the link weights are positive, so there are no loops in the
shortest paths. Constraints (2.1) in FAP guarantee that all demands are realised, and constraints (2.2)—
that links loads do not exceed their capacities. The weight systems space in FAP can be further limited;
for instance, two simple weight spaces assuring the consistency of the weight systems are defined by

we ∈ {1, 2, . . . , K}, e = 1, 2, . . . , E (integer systems), (2.3)

we ∈ [1,K], e = 1, 2, . . . , E (continuous systems). (2.4)

2.2. NP-completeness result

Now we shall demonstrate that FAP is an NP-complete problem. To do this we shall show that the
so-called X3C problem (exact cover by 3-sets) ([SP2], p. 221 in [5]) can be transformed to (a simplified
version of) FAP. X3C is known to be NP-complete and is as follows:

1. instance: set X = {x1, x2, . . . , xp} of p = 3q elements (|X| = p) and a family C of n 3-subsets of X
(C = {C1, C2, . . . , Cn}, Ci ⊆ X, |Ci | = 3, i = 1, 2,. . . ,n), n ≥ q.

2. question: does C contain a subfamily C ′ ⊆ C, of q (|C ′| = q) pair-wise disjoint subsets of X?

204 M. Pióro et al. / Performance Evaluation 48 (2002) 201–223

Fig. 2. The single-commodity flow graph.

Consider the directed single-commodity flow graph depicted in Fig. 2. Vertex s is the source, vertex
t is the sink. The vertices in the upper row correspond to the 3-sets of family C, whilst the vertices
in the lower row correspond to the elements of set X. The edges between the two rows reflect the
incidence relation between family C and set X: vertex Ci is connected to vertex xk if, and only if,
xk ∈ Ci (in the considered example C1 = {x1, x2, x3}, C2 = {x2, x4, xk} and Cn = {xk−1, xk+1, xp}).
In the sequel we shall assume that X ⊆ ∪C, i.e. that family C covers set X (otherwise X3C is
trivial).

It is easy to see that for the particular edges capacity values assumed in the considered graph, the
value of the maximal flow from s to t is equal to q + 1. To see this we first note that the flow cannot
be greater than q + 1, since no more flow than q + 1 can be received by the sink. On the other hand,
we can saturate all the edges incoming to vertex u and hence achieve the maximal flow. To do this, for
each element of X we select one 3-subset from C that contains the considered element and assign flow 1/3
to the corresponding edge. This operation determines how much flow must be assigned to each edge from
the source to the first row of vertices. The maximal flow from s to t can be easily found in the described
way in polynomial time.

Now let us constraint the admissible flows in the considered graph to the so called equal-split flows
(ES-flows). A flow f is an ES-flow if for each vertex v the flows assigned to the edges outgoing from v

are either equal to 0 or to some fixed, vertex-dependent positive value. In other words, for any fixed
vertex v and each edge of the form (v,w), there exists a number z(v) such that f (v,w) = 0 or
f (v,w) = z(v). The basic observation leading to our NP-completeness result is that the answer to
the question in X3C is positive if and only if the maximal ES-flow in the considered graph is equal
to q + 1.

Suppose the subfamily C ′ = {Ci(1), Ci(2), . . . , Ci(q)} exactly covers set X. We assign flow equal 1 to
all edges (s, Ci (j)) for j = 1, 2, . . . , q (i.e. f (s, Ci(j)) = 1, j = 1, 2, . . . , q), and flow equal 0 to the rest
of the edges of the form (s, Cl). This assignment will force f (xk, u) = 1/3 for k = 1, 2, . . . , p. Finally,
assigning f (s, t) = 1 we arrive at an ES-flow with value q + 1. Conversely, if the maximal ES-flow is

M. Pióro et al. / Performance Evaluation 48 (2002) 201–223 205

Fig. 3. The single-commodity flow graph.

equal to q + 1 then, due to the equal-split assumption, this can be achieved only in one way: flow equal
to 1 is assigned to edge (s, t) and to exactly q out of p edges of the form (s, Cl) (with f (s, t) < 1 the
flow value q + 1 could not be achieved because of the capacity q assigned to link (u, t)). Note that this is
the reason why edge (s, t) is necessary: without it, it would be possible, as illustrated in Fig. 3, to find an
ES-flow with value q even if there would be no exact 3-cover.) The only possible way to maintain flow
of value q down in the main part of the graph (i.e. the left part, without edge (s, t)) is to saturate all edges
incoming to vertex u. This implies that the vertices Cl with f (s, Ci(j)) = 1 define the family C′ exactly
covering set X.

Thus, we have proved our observation: the answer to the X3C question is positive if and only if the
maximal ES-flow is equal to q + 1. Hence, if we were able to find in polynomial time an ES-flow equal
to q + 1, or show that such a flow does not exist, then we would answer X3C in polynomial time. This
proves that the following ES-flow problem (ESF) is NP-complete:

• instance: integers p, q, n such that p = 3q and n ≥ q, and a graph of the structure depicted in Fig. 1.
• question: does there exist an ES-flow of value q + 1?

Note that any instance of ESF can be solved by solving a corresponding instance of FAP. Such
instances of FAP have only one demand d = 1 (between s and t) with volume h1 equal to q + 1,
and the path structure and links capacities specified by the graph in Fig. 2. The task is to find a links
(edges) weight system that combined with the ECMP rule defines an ES-flow f answering the ques-
tion in ESF. Of course, every ES-flow in the considered graph can be generated by the weight system
defined by assigning weights w = 1 to all edges with positive flows in the main part of the graph
(these flows are either 1, 1

3 or q), weight w = 4 to edge (s, t), and weights w = ∞ to all other
edges. Thus any algorithm solving FAP solves also ESF, and hence X3C. This proves that FAP is NP-
complete.

206 M. Pióro et al. / Performance Evaluation 48 (2002) 201–223

2.3. Another formulation

In a well-known paper [2] the authors consider piece-wise convex linear functions fe(x) for penalising
breaking constraints (2.2). The problem is

minimiseC =
∑
e

fe


∑

d

∑
j

aedjxdj(w)


 , subject to (2.1) and (2.3).

It is stated in [2] that the above problem is also NP-complete.

3. Direct approach

As shown in Section 2, the allocation task considered in this paper (FAP) is NP-complete. Hence, the
heuristic methods are called for. In this section we present three heuristic algorithms for solving FAP
based, respectively, on local search, simulated annealing and Lagrangean relaxation. We start, however,
with the branch-and-bound approach.

3.1. Branch-and-bound

Let us first notice that FAP can be formulated as a mixed linear-integer programme, using the node–link
formulation of the directed graphs multicommodity problems. The following formulation is due to
Tomaszewski [6]. For the purpose of this section the usual notation used in this paper is slightly changed.

The given demand volume to be allocated from node v to node t is given by d(v, t), and o(e) and t(e)
denote the starting and end nodes of link e, respectively. Let V denote the set of nodes, let w(e) ∈ [0, 1]
denote the weight of link e (variables), and let W(v, t) be the length of the shortest path from v to t
(variables). Let {δ(e, t): e ∈ E, t ∈ V } be a set of binary variables such that if δ(e, t) = 1 iff link e is on
a shortest path to node t. Let f (e, t) (variables) denote the flow to node t on link e (it should be zero if
e is not on a shortest path to node t). Let fx(v, t) (variables) denote the maximum flow to node t on all
links outgoing from node v; this should be the flow on each link that is on a shortest path to node t.

FAP in the MIP formulation:∑
e:o(e)=t

f (e, t)−
∑
e:t (e)=t

f (e, t) = −
∑
x∈V
d(x, t), ∀t ∈ V, (3.1)

∑
e:o(e)=v

f (e, t)−
∑

e:t (e)=v
f (e, t) = d(v, t), ∀t ∈ V, ∀v ∈ V, v �= t, (3.2)

∑
t∈V
f (e, t) ≤ c(e), ∀e ∈ E, (3.3)

0 ≤ fx(o(e), t)− f (e, t) ≤ (1 − δ(e, t))
∑
v∈V
d(v, t), ∀t ∈ V, ∀e ∈ E, (3.4)

f (e, t) ≤ δ(e, t)
∑
v∈V
d(v, t), ∀t ∈ V, ∀e ∈ E, (3.5)

M. Pióro et al. / Performance Evaluation 48 (2002) 201–223 207

0 ≤ W(t(e), t)+ w(e)−W(o(e), t) ≤ (1 − δ(e, t))|V |, ∀t ∈ V, ∀e ∈ E, (3.6)

1 − δ(e, t) ≤ (W(t (e), t)+ w(e)−W(o(e), t))|V |, ∀t ∈ V, ∀e ∈ E, (3.7)∑
e:o(e)=v

δ(e, t) ≥ 1, ∀t ∈ V, ∀v ∈ V. (3.8)

Note that using equality in (3.8) forces the shortest paths to be unique. Unfortunately, it turns out that the
above MIP problem is difficult to solve already for small networks (we have tried CPLEX [7]) so we do
not report any numerical results for (3.1)–(3.8).

3.2. Simulated annealing (SAN)

SAN is a well-known multi-purpose meta-heuristic for combinatorial optimisation (cf. [8]). For some
problems SAN is able to find solutions close to global optima, even for the problems with large state spaces.
The advantages of this heuristic are its general usability, easy adaptation to a particular application and
easy implementation. For the network design purpose it has been applied, e.g. in [9]. In our implementation
the integer weight systems (2.3) are assumed.

begin
initialise(w old); min cost:= C(w old); w best:= w old; T:= initial temperature;
while T ≥ temperature lower bound and min cost > cost lower bound

for counter:= 0 to counter upper bound do
w new:= neighbour(w old); �C:= C(w new)-C(w old);
if �C ≤ 0 then
begin

w old:= w new; if C(w new) < min cost then begin min cost:= C(w new);
w best:= w new end

end
else if random < exp{−�C/T } then w old:= w new;

end for;
T:= T × a

end while
end

We start with solution w old generated by procedure initialise(w old) and route all the demands accord-
ingly. Then, at each step, the algorithm selects a neighbour of w old, using function neighbour(w old).
The neighbouring state, w new, is obtained by selecting at random a link and incrementing or decre-
menting its weight by 1 (the selection from the two possibilities is also random). Then the demands are
routed according to the new weight system w new, and the cost of the new state, C(w new), is calculated
and compared to the cost of the old one, C(w old). If the cost of the new state is not greater than of the
old one, the new state is always accepted. If C(w new) is greater than C(w old), the new state is accepted
according to the metropolis test. The outcome of the test depends on the current temperature T (basic
control parameter of SAN) and on the cost difference between the states ((C). At the beginning, SAN
will accept states with relatively large(C with a high probability, which is then decreased exponentially
during the optimisation process. This allows for a better scanning of the state space to avoid local optima.

208 M. Pióro et al. / Performance Evaluation 48 (2002) 201–223

At the end of the main loop the temperature is decreased (a < 1); the loop is executed until the
temperature reaches a predefined lower bound. The cost of solution w is equal to the total exceeded
capacity: C(w) = ∑

emax{∑d

∑
j aedjxdj(w)− ye, 0}.

3.3. Weights adjustment (WA)

The following local search method tries to directly compute a feasible link weight system. The method
iteratively adjusts the links weights on the basis of the current links loads: in the consecutive steps the
algorithm increases the weights of overloaded links and decreases the weights of the under-loaded ones.
Two types of weight systems can be handled: integer systems (2.3) or continuous systems (2.4). The
algorithm works according to the pseudo-code given below.

The algorithm starts from a randomly generated weight system w. If the network is overloaded the
weight adjustment process is started. All demands are routed according to the current weight system w old,
and then the cost of each link, cost new(e), is calculated as follows. If link e is under-loaded, its cost is
made equal to its current load (occupied capacity) y

¯ e
(cost new(e) = y

¯ e
) and its weight is decreased by a

small random value. If the link is overloaded, its cost becomes a sum of two terms: one equal to the capacity
ye, and a second equal to the square of the link load minus its capacity (cost new(e) = ye + (y

¯ e
− ye)2);

then the weight of the considered link is increased to remove it form some demand flows. The magnitude
of the increase depends on the value of cost new(e) and the absolute value of the difference between the
cost old(e) and cost new(e).

If for the current weight system the network is under-loaded, the second part of the algorithm is
activated. The most loaded link and the least loaded link are selected, and their weights are increased and
decreased by 1, respectively. Then all demands are routed according to the adjusted weight system, and
the network cost is calculated (the cost can reflect one of three possible objectives: maximisation of the
average free capacity, maximisation of the total free capacity, or minimisation of the variance of the links
free capacity). If the cost decreases (so the algorithm moves in the right direction) the new weight system
is accepted, whilst if the cost increases, the system is accepted according to the Metropolis test of SAN
(cf. Section 3.2). If the new weight system is accepted the procedure is repeated (provided all links are
under-loaded).

begin
for e:= 1 to E do set counter(e); generate initial weight system(w old);
for step:= 1 to max step do

begin
route demands(w old);
for e:= 1 to E do cost old(e):= compute cost(e);
if network is overloaded then
for e:= 1 to E do

begin
cost new(e):= compute cost(e);
w new(e):= modify weight(cost new(e), cost old(e), w old(e)); cost old(e):= cost new(e);

end;
route demands(w new);
if network is under-loaded then

M. Pióro et al. / Performance Evaluation 48 (2002) 201–223 209

repeat
w new:= modify weights(w old);
route demands(w new);

until new solution is not accepted or network is overloaded;
w old:= w new;

end {main for loop}
end

3.4. Lagrangean relaxation (LR)

Consider the following linear programming task, called OT, with no OSPF constraints on flows:

maximiseC =
∑
e

be


ye −

∑
d

∑
j

aedjxdj


 , (3.9)

subject to∑
j

xdj = hd, d = 1, 2, . . . , D, (3.10)

∑
d

∑
j

aedjxdj ≤ ye, e = 1, 2, . . . , E, (3.11)

where xdj ≥ 0 is the flow realising demand d on path j, and be are given coefficients.
Using LR we can solve the problem dual to OT (cf. [10]). The idea of this approach is that the dual

solution yields a weight system that can be used for the OSPF routing. The dual problem is obtained by
dualising (4.3) and (4.4), and forming the Lagrangean:

L(π, λ, x)=
∑
e

be


ye−∑

d

∑
j

aedjxdj


+

∑
d

λd


hd −

∑
j

xdj


+

∑
e

πe


∑

d

∑
j

aedjxdj − ye



=
∑
d

λdhd −
∑
e

(be + πe)ye +
∑
d

∑
j

(∑
e

aedj(be + πe)− λd
)
xdj. (3.12)

The dual problem to OT, abbreviated to DP, is as follows:

maximiseW(π, λ) = minx≥0L(π, λ, x), over π ≥ 0, and λwith unlimited sign. (3.13)

DP can be solved with subgradient optimisation (cf. [11]) since it can be shown that (3.13) is equivalent
to

maximiseV (π) =
∑
e

(be + πe)(y
¯ e

− ye) over π ≥ 0, (3.14)

where y
¯ e

is the load of link e resulting from allocating each demand volume to one of its cheapest (shortest)
path with respect to the link costs equal to (be + πe), e = 1, 2, . . . , E. For a fixed π the subgradient is

210 M. Pióro et al. / Performance Evaluation 48 (2002) 201–223

calculated according to the formula:

∂V (π)

∂πe
= y

¯ e
− ye, e = 1, 2, . . . , E. (3.15)

Alternatively, we can use the following formulation dual linear programming formulation DLLP:

maximiseW(π, λ) =
∑
d

λdhd −
∑
e

(be + πe)ye,

subject to

λd ≤
∑
e

aedj(be + πe), j = 1, 2, . . . , m(d), d = 1, 2, . . . , D, (3.16)

π, λ ≥ 0 (3.17)

DLPP is more efficient in the cases when we can predefine the sets of allowable paths for the demands.
Otherwise, for large networks, the subgradient solution of DP is usually superior to the LP solution since
it can easily scan all the paths with the Dijkstra shortest path algorithm (to compute y

¯ e
for fixed π).

After solving LR we arrive at a set of optimal multipliers π0 = (π0
1 , π

0
2 , . . . , π

0
E) and define a weight

system:

w0
e = be + π0

e , e = 1, 2, . . . , E. (3.18)

The system w0 has a property that all the non-zero optimal primal flows (solving OT) can be realised
only on the paths that are the shortest with respect to the weights w0. Hence, if for each demand d there
exist only one such a shortest path, then task FAP of Section 2 (and hence the OSPF routing problem) is
solved. However, the uniqueness of the shortest paths is not guaranteed (cf. Section 6). If the uniqueness
is not the case, we can anyhow try to use the weight systemw0 for the OSPF routing. This in general will
lead to a non-feasible solution to FAP, since the flows that solve the primal problem AT4 are in general
different than those generated with the ECMP rule. Nevertheless, if a number of demands with multiple
shortest paths is not large and when the number of the shortest paths for such demands is low (2–3 shortest
paths) then we can expect that the ECMP flows will give a good near-optimal solution.

4. Two-phase approach

In this section we formulate a two-phase approach, in which both phases are based on mathematical
programming: Phase 1 on MIP, and Phase 2 on linear programming (LP). The idea is to allocate all
demands to single paths (Phase 1) and then to try to find a weight system for which the paths realising
demands are the unique shortest paths (Phase 2). An additional motivation behind the two-phase approach
is that it leads to weight systemswwith the property that for each demand there is only one, unique shortest
path with respect tow. This allows for applying the simplest version of the Dijkstra shortest path algorithm
at the nodes in order to set the packets’ routing tables (otherwise more complicated algorithms have to
be used). However, no effective necessary and sufficient condition, which can be used to generate such a
subset ofW , is available (cf. [3,4]). The approach, although simpler than the direct one, not always leads
to a feasible solution, first of all because of possible non-feasibility of the resulting Phase 2 task.

M. Pióro et al. / Performance Evaluation 48 (2002) 201–223 211

4.1. Formulation of the two-phase optimisation task

1. Phase 1 (MIP)
• indices:
d = 1, 2, . . . , Ddemand
j = 0, 1, . . . m(d)paths for flows realising demand d
e = 1, 2, . . . E links

• constants:
hd minimal volume of demand d
aedj 1 if e belongs to path j realising demand d, 0 otherwise
ye capacity of link e

• variables:
εdj binary variables forcing the single-path flow of demand d

• constraints:∑
j

εdj = 1, d = 1, 2, . . . , D, (4.1)

∑
d


∑

j

aedjεdj


hd ≤ ye, e = 1, 2, . . . , E. (4.2)

Suppose we have found a solution to Phase 1. For the purpose of Phase 2 the paths are renumbered in
order to make paths j = 0 the ones that carry the whole flow (i.e. to make εd0 = 1 for each demand d).

1. Phase 2 (LP)
• variables:
we weight of link e (continuous variable)

• constraints:∑
e

aed0we ≤ 1 +
∑
e

aedjwe, d = 1, 2, . . . , D, j = 1, 2, . . . , m(d), (4.3)

we ≥ 1, e = 1, 2, . . . , E. (4.4)

The above linear programme gives the necessary and sufficient conditions for existence of a weight system
yielding the paths identified by (d, 0) as the unique shortest paths. If the LP is infeasible then the weight
system does not exist. Although, formally, the list j = 0, 1, . . . , m(d) should contain all the network paths
for each demand d, the above LP can be solved without generating all constraints (4.3), as explained in [3].

4.2. Solving Phase 1

The variants of Phase 1 are formulated as MIPs and as such can be solved exactly only for small
networks, as available exact methods for MIPs (i.e. the branch-and-bound and the cutting-plane methods)
usually fail for large networks because of excessive time and memory requirements. Fortunately, in
the considered single-path allocation case, approximate heuristic methods can be effective in terms of
solutions quality (suboptimality) and of acceptable computation times.

212 M. Pióro et al. / Performance Evaluation 48 (2002) 201–223

Below we describe two such approaches for solving Phase 1: evolutionary algorithm and simulated
allocation.

4.2.1. Evolutionary algorithm (EA)
The use of EAs is another well-known meta-heuristic [12]. In the context of network design it has been

used in, e.g. [13,14]. Below we present pseudo-code of the so-called (µ+ λ) evolution strategy that we
use to solve Phase 1.

begin
n:= 0; initialise(P0);
while not stop criterion do
On = ∅;
for i:= 1 to λ do On:= On ∪ crossover(Pn); for ε ∈ On do mutate(ε);
Pn+1:= select best(On ∪ Pn);
n:= n+ 1

end while
end

EA works with full allocation states ε = (εdj, d = 1, 2, . . . , D, j = 0, 1, . . . , m(d)), called chromo-
somes, satisfying constraints (4.1). Within a chromosome, each subsequence εd = (εdj, j = 0, 1, . . . ,
m(d)) is called a gene (corresponding to demand d). Constraints (4.2) are taken into account via a penalty
function, as will be shown below.

The algorithm starts with forming an initial population P0 ofµ chromosomes, each generated randomly,
with all genes satisfying constraints (4.1). At each step n, a set On of λ chromosomes is formed. Each
element of this set is obtained as an outcome of the crossover operations on two (parent) chromosomes
of population Pn (parents). Each parent is selected from the population with the probability proportional
to its fitness function

C(ε) =
∑
e


max



∑
d


∑

j

aedjεdj


hd − ye, 0






2

. (4.5)

Having fixed the parents, their off-spring is formed by taking gene by gene at random from the parents
(gene εd , d = 1, 2, . . . , d, is taken from a parent with probability 1/2). Next, each chromosome from the
so formed set On is mutated. The mutation consists in changing randomly the current allocation path in
each gene of the mutated chromosome with a low probability p (e.g. p = 1/D).

Finally, the next population is formed by taking the best, according to the fitness function, elements out
of the previous population Pn and the set On. The main step is repeated until the fitness function of the
best chromosome in the current population is equal to 0, or there is no improvement in the consecutive
N steps (i.e. the best chromosome has the same, positive value of the fitness function in N consecutive
steps).

4.2.2. Simulated allocation (SAL)
SAL is a meta-heuristic which has been previously applied to similar problems [15]. It is particularly

well suited for Phase 1 because of the assumed full demand aggregation (demand volumes are allocated to
single paths). In fact, SAL is more effective than EA in finding feasible solutions of the Phase 1 problem.

M. Pióro et al. / Performance Evaluation 48 (2002) 201–223 213

Fig. 4. A necessary condition.

Below we briefly describe a more sophisticated application of SAL to Phase 1. In the application any set
of currently used paths fulfils a simple necessary uniqueness condition illustrated in Fig. 4. The condition
(cf. [3,4]) requires that if two paths meet at a certain node, they must continue their way along a common
sequence of links until they split for good (in Fig. 4 the paths a–c–e–g and b–c–d–f on the left side satisfy
this condition, whilst the paths a–c–e–g and b–c–d–e–f to the right do not). The condition is known to be
rather powerful [3,4]. Note that for undirected graphs it is easy to check the condition for a given pair of
paths: if the paths are not disjoint, the number of common nodes must be equal exactly to the number of
common links plus 1.

The SAL algorithm works with partial allocation flow sequences (states)ε = (εdj, d = 1, 2, . . . , D, j =
1, 2, . . . , m(d)), i.e. (4.1) does not necessarily hold for all demands. The algorithm starts with the all
zero-flow solution (εdj ≡ 0) and in each step chooses, with probability q(ε), between allocate (ε), i.e.
adding one demand flow to the current flow sequence ε, and disconnect (ε), i.e. removing one or more
demand flows from the current solution ε. We require that q(ε) > 1/2, except for maximal allocation
states ε for which q(ε) = 0 (ε is a maximal allocation state if all demands are allocated, i.e. when
|ε| = ∑

d

∑
jεdj = D). Whenever a complete allocation state is reached, a check is made whether the

cost of the best reached so far solution (min cost) is improved. Procedure disconnect(ε) is used in two
variants:

disconnect 1(ε): remove from ε one previously allocated demand flow (at random);
disconnect 2(ε): remove fromε all the demand flows which use all the overloaded links, and, additionally,

some randomly chosen links (with a certain probability).

begin
step:= 0; min cost:= ∞; ε:= 0;
repeat

step:= step + 1;
if random < q(ε) then allocate(ε) else if C(ε) < min cost then disconnect 1(ε)

else disconnect 2(ε);
if ε is a maximal allocation state and C(ε) < min cost then

begin min cost:= C(ε); ε best:= ε end
until step = step limit or min cost = cost lower bound

end

214 M. Pióro et al. / Performance Evaluation 48 (2002) 201–223

The second variant is applied if (and only if) the maximal allocation state is reached or if the current
auxiliary cost C(ε) = ∑

emax{∑d(
∑
j aedjεdj)hd − ye), 0} (expressing the total exceeded links capacity

in the current allocation state) becomes greater than the current value of min cost.
Procedure allocate(ε) assigns demand flow hd to a selected path and increments the corresponding

entry εdj by 1. The demand d to be allocated is chosen at random from the set of the not yet allocated
demands; for a given d, the allocation path j is selected using a shortest path algorithm (see below). It is
important that a new demand can be allocated only to a path that satisfies, together with the allocation
paths used in the current solution ε, the necessary feasibility condition described at the beginning of this
section.

In fact, the allocation probability q(ε) depends on the state through the number of allocated demands,
i.e. q(ε) = q(|ε|). Of course, q(0) = 1 and q(D) = 0. One way to settle the allocation probabilities is
to choose a threshold D

¯
(0 ≤ D

¯
≤ D

¯
, e.g. D

¯
= 0.8D), and to set q(k) = 1 for k ≤ D

¯
and q(k) = q

¯
for

D
¯
< k < D, for some fixed q

¯
> 1/2.

The algorithm is terminated either when a feasible solution to Phase 1 allocation problem is found or
when the assumed limit on the number of steps (executions of the main loop) is reached.

To find an allocation path for the currently selected demand, any standard shortest path labelling algo-
rithm can be used (e.g. the Dijkstra algorithm) with a modified way of nodes labelling. The modification
affects the way new nodes are labelled from the already labelled ones. Consider a graph with undirected
links. For each node pair {a, b} there is specified an attribute n(a, b) equal to the number of times the
two nodes belong to the same path in the set of the currently allocated paths. When a demand is re-
moved, the attribute n(a, b) is decremented by for all node pairs {a, b} belonging to the path being just
disconnected.

When a demand between nodes s and t is to be allocated, the shortest path tree starting from node
s is built according to the standard labelling rule with the following, important adjustments. Suppose
we are at a labelled node a, and node a is on the path s–c–· · · –d–f–· · · –a from nodes in the tree under
construction, and we consider labelling node b from node a. Then we can label node b only when (cf.
Fig. 5) the following cases hold.

Case 1. Nodes a and b do not belong to a common path (n(a, b) = 0): The path s–c–· · · –d–f–· · · –a
in the currently constructed tree cannot contain any node v belonging to a common allocation path with
node b(n(v, b) = 0 for v = s, c, . . . , d, f, . . . , a).

Case 2. Nodes a and b belong to at least one common allocation path (n(a, b) > 0): The path
s–c–· · · –d–f–· · · –a in the currently constructed tree has the following property: nodes from s to d do

Fig. 5. Node labeling.

M. Pióro et al. / Performance Evaluation 48 (2002) 201–223 215

not belong to a common allocation path with node b, and f–· · · –a–b is a subpath of one of the currently
allocated paths. The latter condition is equivalent to: edge {a, b} belongs to at least one path and nodes
f, a and b belong to at least one common path.

If node t is reached, an allocation path is found and the demand volume between nodes s and t is
allocated to it. Then the attribute n(a, b) is incremented by 1 for all node pairs {a, b} belonging to the
selected path.

When demand d is being allocated in state ε, the metric of link e used in the labelling decisions is
equal to 1 + T (max{0, y

¯ e
(ε) + hd − ye})2 + be. In the preceding definition y

¯ e
(ε) is the load of link e

in state ε (i.e. y
¯ e
(ε) = ∑

d(
∑
j aedjεdj)hd))), T is a fixed positive number. The definition of be, which

takes the history of the process into account, is somewhat more complicated: be is incremented each time
the capacity of link e is exceeded during optimisation. Still, be is bounded—its value cannot exceed the
upper bound B (if be reaches bound B then it stays with this value).

The above described labelling procedure works as well for directed graphs. Note, however, that in both
cases there may appear situations when a new path cannot be allocated because the existing consistent
set of paths blocks all the paths from s to t. An example presented in Fig. 6 [6] depicts such a situation:
all paths from s to t are inconsistent with the consistent set of paths {p1, p2, . . . , p6}. Such situations are
the more frequent the higher the ratio D/E. Fortunately, due to the stochastic character of SAL, when
a blocking situation is encountered for some current set P of allocated paths and for some demand d,
sooner or later demand d will be allocated because the current set P is changing all the time in a stochastic
manner.

4.3. Solving Phase 2

The linear programme (4.3)–(4.4) for Phase 2 can be effectively solved by considering only the mean-
ingful constraints through consecutive generating of two shortest paths for each demand [3]. An alter-
native formulation is discussed in [4]. Below we give still another necessary and sufficient condition
derived from the dual theory [10], especially useful for testing a system of paths for not being rea-
lisable.

There exists a system of weights w = (w1, w2, . . . , wE) with we ≥ 0 and
∑
ewe = 1 such that

for each demand d = 1, 2, . . . , D the path (d, 0) is the unique shortest path if and only if the follow-
ing LP

Fig. 6. A blocking situation in SAL.

216 M. Pióro et al. / Performance Evaluation 48 (2002) 201–223

• constants:

redj =




0 if both path number 0 and path number j (j = 1, 2, . . . , m(d)) realising demand
d contain link e, or both paths do not contain link e

1 if path j (j = 1, 2, . . . , m(d)) realising demand d contains link e and
path number 0 does not

−1 if path j (j = 1, 2, . . . , m(d)) realising demand d does not contain link e and
path number 0 does

• variables:
σdj non-negative continuous variable

• constraints:∑
d

∑
j>0

redjσdj ≤ 0, e = 1, 2, . . . , E, (4.7)

∑
d

∑
j>0

σdj = 1 (4.8)

is infeasible.

5. Numerical results

Below we discuss applications of the algorithms described in Sections 3 and 4 for two sets of network
configurations: a set of two undirected 7-node (N7) and a 12-node (N12) networks and a set of four 7,
14, 28 and 56-node directed networks. We start with the undirected networks. N7 is an artificial network
consisting of seven nodes, E = 12 links and D = 21 demands, whilst N12 is a model of a Polish
transit long-distance network and consists of 12 nodes, E = 18 links and D = 66 demands (cf. Fig. 7).
Individual demand volumes for N12 and N7 are given in Table 1.

As mentioned above, in N7 and N12 demands, links and paths are bidirectional. For N7 we consider
one set of links capacities, and for N12—two such sets (coded by links end-nodes). The considered
configurations are saturated in the sense that the demand realisation consumes all available links capacity.

N7-1 : y(1, 2)= 75, y(1, 6) = 75, y(1, 7) = 79, y(2, 3) = 78, y(2, 7) = 87, y(3, 4) = 77,

y(3, 7)= 97, y(4, 5) = 71, y(4, 7) = 100, y(5, 6) = 80, y(5, 7) = 95, y(6, 7) = 86,

Fig. 7. Graphs of N7 and N12.

M. Pióro et al. / Performance Evaluation 48 (2002) 201–223 217

Table 1
Demand volumes

N12 N7

2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7

1 10 11 13 13 16 7 19 10 6 13 14 24 25 28 19 49 32
2 0 3 21 19 21 14 32 14 5 68 32 0 36 17 38 26 49
3 0 0 27 21 25 17 35 14 3 107 24 0 0 31 46 46 34
4 0 0 0 11 21 15 51 21 19 84 40 0 0 0 24 25 31
5 0 0 0 0 13 20 35 5 18 74 28 0 0 0 0 36 33
6 0 0 0 0 0 16 34 4 9 30 18 0 0 0 0 0 21
7 0 0 0 0 0 0 21 14 12 4 15
8 0 0 0 0 0 0 0 28 47 129 14
9 0 0 0 0 0 0 0 0 7 61 13

10 0 0 0 0 0 0 0 0 0 24 19
11 0 0 0 0 0 0 0 0 0 0 97

N12-1 : y(1, 11)= 89, y(1, 3) = 17, y(2, 3) = 273, y(2, 8) = 391, y(2, 11) = 545,

y(3, 10)= 9, y(4, 5) = 216, y(4, 7) = 146, y(4, 12) = 287, y(5, 9) = 122,

y(5, 11)= 127, y(6, 9) = 137, y(6, 11) = 242, y(7, 11) = 284, y(7, 12) = 177,

y(8, 10)= 160, y(8, 12) = 328, y(1, 6) = 26,

N12-2 : y(1, 11)= 47, y(1, 3) = 135, y(2, 3) = 205, y(2, 8) = 32, y(2, 11) = 376,

y(3, 10)= 211, y(4, 5) = 275, y(4, 7) = 15, y(4, 12) = 241, y(5, 9) = 67,

y(5, 11)= 317, y(6, 9) = 124, y(6, 11) = 221, y(7, 11) = 382, y(7, 12) = 338,

y(8, 10)= 236, y(8, 12) = 379, y(1, 6) = 128.

Table 2 summarises the performance of the methods for the above network examples. For all methods,
except for LR which is not a stochastic method, the time (for the following computers: WA and SAN—
Sparc I 143 MHz; LR and EA—Sparc II 250 MHz; SAL—PC 366 MHz) and the number of steps presented

Table 2
Performance of the methods

Link (1) Load (2) Time (s) (3) Steps (4)

All LR All LR WA/C WA/I SAN WA/C WA/I SAN

N7-1 2 – 23 – 0.18 0.06 <30 17 7 <4000
N12-1 0 0 0 0 0.24 0.15 <30 26 11 <5000
N12-2 1 2 13 34 1.12 0.67 <30 49 36 <5000

EA SAL EA SAL LR EA SAL LR EA SAL

N7-1 0∗ 2 0∗ 23 0.5 4 0.1 <7000 5000 130
N12-1 0 0 0 0 0.03 129 9.3 <20 30000 6000
N12-2 0∗ 1 0∗ 13 4.4 174 6.8 <7000 40500 15000

218 M. Pióro et al. / Performance Evaluation 48 (2002) 201–223

in columns 3 and 4 are averages over several tens of runs for each case, and they give the values for
entering the reported solutions for the first time during a single run. The notion of “step” has different
interpretation for different methods. In WA one step consists of computing all flows for a new weight
system from scratch, while for SAN and SAL one step requires less computations, as only few flows have
to be recomputed. For EA one step means the computation of links loads for one chromosome. For LR
one step corresponds to one computation of the subgradient of the dual function.

The number of overloaded links is shown in column 1 whilst the total links load exceeding the total
links capacity is shown in column 2. The three direct methods WA/C (continuous weights), WA/I (integral
weights) and SAN, and the two-phase method based on SAL found the same final solutions in terms of
the demand flows. For each network all demands were allocated to single paths (for SAL this is an
intrinsic feature); the weight systems, however, were different for different methods (recall that for SAL
the weights are found in Phase 2 by solving an LP task). For N12-1 the direct method LR quickly found
a weight system that implies unique shortest paths (identical to those found by all other methods from
Table 2) and thus solved the OSPF allocation problem. For N12-2, LR found systems of weights that
imply unique shortest paths for 61 demands, still for the remaining five demands exactly two shortest
paths appeared. Applying CPLEX we found the corresponding flows (demand split) for the demands with
more than one shortest paths, finding a solution to FAP. The split is different from the ECMP split, and
therefore the LR solution does not strictly solve the original problem. However, if we use the weights of
LR and apply the ECMP rule, we arrive at the flows which overload only two links and yield a solution
not much worse than that of WA, SAN and SAL. Unfortunately, this scheme does not work well for N7.
Here, only 10 out of 21 demands have unique shortest paths, and there is a demand with as many as seven
shortest paths. In consequence, if we calculate the ECMP flows for the LR weights then many links will
be overloaded (and many under-loaded) so the LR approach simply does not work (this is indicated with
“−” in columns 1 and 2). Despite these limitations, we note that LR, as a scalable method applicable for
large networks, may be used to yield initial weight systems (starting points) for other direct methods (as
WA and SAN).

We have also applied the two-phase approach with EA in Phase 1. In all the three cases the resulting
single path allocations were feasible in terms of Phase 1 (all links were saturated and no link was
overloaded). For N12-1 the solution was identical with the one found by all other considered methods.
For N7-1 and N12-2, however, the EA solutions could not be realised with any weight system (they are not
feasible OSPF solutions—this is marked with “∗” in columns 1 and 2). Nevertheless, as EA is a powerful
(although time consuming) method for finding feasible single path demand allocations (independent of
the ECMP constraints), it can be useful for finding lower bounds for link overloads in the cases when a
feasible ECMP solution cannot be found by other methods. Also if EA cannot find any feasible solution
in Phase 1, then also the original problem (FAP) will most likely be non-feasible.

Next we have considered a set of four directed (artificial) networks with 7, 14, 28 and 56 nodes
(cf. Table 3). Each network was dimensioned using a design version of WA in three variants: satu-
rated (realisation of demands consumes all available links capacity), and with medium and with high
over-dimensioning of the links. The results are reported for WA/I, SAN and SAL, and, additionally for
uniform weights (UWs) and inverse capacity weights (ICWs).

Table 4 summarises the performance of the methods for the saturated examples. For all the methods,
except for UW and ICW, which are not stochastic, the reported values are averages over several runs.
The notation is as follows: AVRT—the average running time (s) for reaching the reported solutions for
the first time during a single run, POPT—the percent of feasible solutions found in all runs, AVOL—the

M. Pióro et al. / Performance Evaluation 48 (2002) 201–223 219

Table 3
Example networks

No. of
links

Total
capacity

Total capacity
(medium over-dimension)

Total capacity
(high over-dimension)

No. of
demands

Total
demand

Nodes/links

7 nodes 22 48000 52164 55968 42 34320 0.32
14 nodes 42 329280 342342 352308 182 172320 0.33
28 nodes 84 2192744 2283988 2347868 756 892492 0.33
56 nodes 224 9784716 9863190 11040272 3080 3340320 0.25

average number of overloaded links, and AVTO—the average total network overload (the sum of the
exceeded links capacities). For UW and ICW the execution times are negligible.

Results for the remaining two cases are given in Tables 5 and 6. As the tables show, for all the considered
cases the simple methods UW and ICW are strongly outperformed by the stochastic algorithms. For small
networks WA, SAN and SAL are comparable in terms of the quality of results and the computation time
(only SAN is more time consuming) for all the considered cases.

For large and tightly dimensioned networks the best results have been obtained with SAN (at the expense
of long computation times). The algorithm, when appropriately tuned, gives almost deterministic results.
This is true for example for the 56-node networks with the running time set to 1/2 h. With longer execution
time (of about 2 1

2 h) the algorithm is also almost deterministic and sometimes it finds better results in
terms of the unused network capacity in the cases of over-dimensioned networks. WA also gives results
of good quality for the saturated and over-dimensioned networks; it is very fast and performs slightly
better than SAL. For the saturated 28-node network, SAL was not able to find any feasible solution; WA
found feasible solutions in almost 50% of runs. Note, however, that for the 56-node saturated network
no algorithm was able to find any feasible solution. For more realistic cases of slightly over-dimensioned
networks, WA and SAL produce results comparable with SAN, even for the 28-node network, but for
56 nodes the SAN is still the best (but, again, at the expense of very long computation times).

In terms of the computation times, WA is clearly superior to all the other stochastic methods. This
method also gives good, consistent results for large networks and is very simple. SAL cannot currently
compete with WA in terms of the execution times and the capability of computing near-optimal solutions.
Note, however, that in case of the high over-dimensioning networks SAL gives results comparable to the
other two methods, even for the 56-node network; SAL was able to find a feasible solution in 30% of
runs, comparing to 10% for WA (this is also the case for the highly over-dimensioning cases). The slow
performance of SAL for large networks is caused by the phenomenon of blocking states, for which the
algorithm is not able to find a new path consistent, in the sense of the necessary condition for the existence
of a weight system, with the already allocated paths. In large networks with long paths this phenomenon
can be observed more often, making the method less effective (an improvement here can be achieved
by finding a more effective way of omitting the blocking states—the work is in progress). We have also
tested all the methods for the same network configurations, but dimensioned with a variant of SAL. The
algorithm finds the first realisation of demands consistent in the sense of the necessary condition, and
then computes the corresponding link capacities. The resulting networks are characterised in Table 7 (the
difference in the number of links with the previous examples comes from the fact, that links with zero
capacity are “erased”). For these networks the over-dimensioning was assured simply by adding 5 and
10% of capacity to each link. Note that, except for the 56-node network, the total capacity is greater

220
M

.P
ióro

etal./Perform
ance

E
valuation

48
(2002)

201–223

M. Pióro et al. / Performance Evaluation 48 (2002) 201–223 221

Table 7
Parameters of the re-dimensioned networks

No. of links Total capacity No. of demands Total demand Nodes/links

7 nodes 15 61080 42 34320 0.47
14 nodes 36 367680 182 172320 0.39
28 nodes 80 2260184 756 892492 0.35
56 nodes 208 9776880 3080 3340320 0.27

Table 8
Results for 56-node re-dimensioned network

Saturated Capacity + 5% Capacity + 10%

WA SAN SAL WA SAN SAL WA SAN SAL

AVRT 149.81 – 1604.54 152.54 – 1320.61 153.73 – 1090.19
POPT 0 0 0 100 100 0 100 100 90
AVOL 61 8 72.5 0 0 4 0 0 1.1
AVTO 488.1 2520 114912 0 0 8608.2 0 0 0.18

than in the previous examples, although the number of links is always lower than for the networks of
Table 3.

For these cases all stochastic algorithms give comparable results for 7, 14 and 28 node networks, either
saturated or over-dimensioned. The difference in quality of the results can only be seen in the case of
56-node network. The results for this case are summarised in Table 8.

Finally, let us note that the paths yielded by SAL are almost always (except for one case) realisable
with a weight system.

6. Conclusions

In the paper we have formulated an OSPF-related flow allocation problem (FAP) and proposed a set
of methods for solving it. We have shown that FAP is NP-complete. We have considered a formulation
of FAP in an MIP form; unfortunately the formulation turns out to be very difficult to solve already for
small networks, even for such a sophisticated solver as CPLEX. Therefore, heuristic methods have to be
applied for FAP.

Numerical studies indicate that the one-phase approach, called WA, consisting in direct finding of
feasible OSPF link weight systems using a Local Search method, is quite effective and fast, still it
requires some tunning. The SAN application finds in general better solutions than WA, still its running
times are much longer.

We have also proposed a two-phase approach. In Phase 1 demands are allocated, using the SAL heuristic,
to single paths so that the resulting set of paths fulfils a necessary condition for the existence of a weight
system, according to which these paths are the unique shortest paths in the network graph. The desired
weight system is then found in Phase 2 using LP. In effect, the two-phase approach is able to provide
non-split flow solutions, which is an attractive feature for the network operation. For the series of the

222 M. Pióro et al. / Performance Evaluation 48 (2002) 201–223

directed networks considered in Section 5, the two-phase approach works nicely for networks up to 28
nodes. For the 56-node network SAL becomes less effective. The reason is that the number of demands
increases with the square of the number of nodes, but the number of links increases linearly with this
number. This makes difficult for SAL to consistently allocate new demands in the high allocation states
(there are relatively too little paths per demand, and, at the same time, they are longer). However, in the
real IP networks the number of transit nodes is not high (30 transit nodes, say) and the rest of the nodes
are just ingress/egress routers which do not transit traffic. Thus, the two-phase approach based on the
SAL heuristic could perhaps be quite useful in practice.

Finally, it should be noted that the proposed methods yield the weight systems that outperform the
simple weight systems currently used in the OSPF networks (UWs or ICWs) to a considerable extent.

References

[1] OSPF Version 2, RFC2328 (http://www.ietf.org/rfc/rfc2328.txt), 1998.
[2] B. Fortz, M. Thorup, Internet traffic engineering by optimizing OSPF weights, in: Proceedings of the INFOCOM’2000,

Tel Aviv, 2000.
[3] W. Ben Ameur, E. Gourdin, B. Liau, Dimensioning of internet networks, in: Proceedings of the DRCN’2000, Munich,

2000.
[4] A. Faragó, B. Szviatovszki, Á. Szentesi, Allocation of administrative weights in PNNI, in: Proceedings of the

NETWORKS’98, Sorrento, 1998.
[5] M.R. Garey, D.S. Johnson, Computers and Intractability—A Guide to the Theory of NP-Completeness, Freeman, New

York, 1979.
[6] A. Tomaszewski, August 2000, Private communication.
[7] ILOG CPLEX 6.5 Reference Manual, ILOG S.A., 1999.
[8] D.S. Johnson, C.R. Aragon, L.A. McGeoch, C. Schevon, Optimization by simulated annealing: an experimental evaluation,

Oper. Res. 39 (1) (May–June 1991).
[9] M. Pióro, T. Stidsen, A. Glenstrup, C. Fenger, H. Christiansen, Design of robust optical networks, in: Proceedings of the

NETWORKS’2000, Toronto, 2000.
[10] L.S. Lasdon, Optimization Theory for Large Systems, Macmillan, New York, 1970.
[11] M. Held, P. Wolfe, H. Crowder, Validation of subgradient optimization, Math. Program. 6 (1974).
[12] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer, Berlin, 1966.
[13] S. Kozdrowski, M. Pióro, J. Arabas, M. Szcześniak, Robust design of multicommodity integral flow networks, in:

Proceedings of the Seventh International Conference on Genetic Algorithms ICGA’97, University of Michigan, East
Lansing, 1997.

[14] D. Medhi, D. Tipper, Some approaches to solving a multi-hour broadband network capacity design problem with single-path
routing, Telecommun. Systems 13 (2000) 269–271.

[15] M. Pióro, P. Gajowniczek, Solving multicommodity integral flow problems by simulated allocation, Telecommun. Systems
7 (1–3) (1997) 17–28.

M. Pióro is a professor at the Institute of Telecommunications, Warsaw University of Technology and at
the Department of Communication Systems, Lund University. He received a Ph.D. degree in telecommu-
nications in 1979 and a D.T.Sc. Degree in 1990, both from the Warsaw University of Technology. During
1984–1987 and 1997 he has been with the Lund Institute of Technology leading research projects for
Ericsson Telecom AB in network design. In 1986 and 2001 he served as a senior expert for ITU. During
1990–1991 he had been working for Alcatel Standard Electrica, Spain, as a consultant in dynamic routing
strategies. Currently he cooperates with Ericsson Traffic Laboratory in Budapest on IP network design
problems. He has written two monographs and almost 100 papers presented in international telecommuni-
cations journals and conference proceedings. He is a technical editor of IEEE Communications Magazine.

His research interests concentrate on modelling, performance evaluation and design of telecommunications networks.

http://www.ietf.org/rfc/rfc2328.txt

M. Pióro et al. / Performance Evaluation 48 (2002) 201–223 223

Á. Szentesi received his M.Sc. degree in 1994 at the Budapest University of Technology and Economics,
where he is currently finishing his Ph.D. Meanwhile, he also works as a research fellow at Ericsson Traffic
Analysis and Network Performance Laboratory in Budapest, Hungary. His main interests are network
planning and performance optimisation problems in high speed networks.

J. Harmatos received his M.Sc. degree in Electrical Engineering in 1998 at Budapest University of
Technology and Economics. Currently he is a Ph.D. student at Department of Telecommunication and
Telematics. He also works as a researcher at Ericsson Traffic Analysis and Network Performance Lab-
oratory in Budapest, Hungary. His research areas are planning and optimisation of IP/OSPF. He is also
interested in optimisation of the topology of UMTS networks.

A. Jüttner received his M.Sc. degree in mathematics in 1998 at the Eötvös Loránd University of Budapest,
where he is currently working for his Ph.D. at Operational Research Department. He also works as a research
fellow at Ericsson Traffic Analysis and Network Performance Laboratory in Budapest, Hungary. His main
interests are combinatorial optimisation and its applications.

Piotr Gajowniczek was born in 1968 in Warsaw. He received his M.Sc. degree in control engineering
in 1993 from the Warsaw University of Technology. Since then he works as a research assistant at the
Institute of Telecommunications, Warsaw University of Technology. His interests concentrate around
telecommunications network design and optimisation.

Stanislaw Kozdrowski was born in Ustrzyki Dolne, Poland, 1969. He received the M.Sc. degree in
electronic engineering and Ph.D. degree in telecommunication from Warsaw University of Technology,
Poland, in 1994 and 2000, respectively. From October 1998 to May 1999, he was a Fellow in the Institute
of Telecommunication Systems of Lund University, Sweden. His research interests include optimisation
and robust design of telecommunication networks by heuristic methods. He currently works for PTC (ERA
GSM, Polish mobile operator) as an expert in telecommunication network dimensioning.

	On open shortest path first related network optimisation problems
	Introduction
	Basic problem and its NP-completeness
	Problem formulation
	NP-completeness result
	Another formulation

	Direct approach
	Branch-and-bound
	Simulated annealing (SAN)
	Weights adjustment (WA)
	Lagrangean relaxation (LR)

	Two-phase approach
	Formulation of the two-phase optimisation task
	Solving Phase 1
	Evolutionary algorithm (EA)
	Simulated allocation (SAL)

	Solving Phase 2

	Numerical results
	Conclusions
	References

